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Abstract. We propose an FBP reconstruction algorithm for a stationary gantry CT scanner with distributed sources.
The sources are fired in quasi-random order to improve data completeness across the field of view (FOV). The down-
sides of that are two-fold. The neighboring sources are fired non-sequentially, so the view derivative should be avoided.
Second, the angular distribution of rays through each voxel is non-uniform and varies across the FOV. To overcome
these challenges we incorporate a weight function into an FDK-type reconstruction algorithm, and integrate by parts
to avoid view differentiation. Results of experiments with simulated data confirm that a properly selected weight
significantly reduces irregular view sampling streaks.
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1 Introduction

Most of CT scanners in operation today collect data in a conventional way. The detector is either
flat or curved (with pixels distributed on a uniform grid), and the source moves along a well-defined
trajectory (e.g., circular or helical) in a sequential way. For such scanners, efficient and high qual-
ity image reconstruction is well established. Reconstruction algorithms range from analytic (i.e.,
formula-based) to iterative. Stationary gantry CT (SGCT) with a distributed source and stationary
detector in the context of security scanning poses unique challenges for image reconstruction. As
is shown in Ref. 1, to achieve uniform illumination of the inspection tunnel, the order in which the
X-ray sources are fired should be sufficiently random. Hence, the notion of source trajectory loses
much of its meaning. The sources that are located close to each other in space are fired nonsequen-
tially at random times. This creates two complications. (1) Since the object moves sufficiently far
during the time when any two neighboring sources are fired, one should avoid calculation of the
derivative along the view direction. (2) The illumination pattern of any voxel is highly anisotropic
and varies significantly across the field of view. In this case, direct application of conventional
formula-based reconstruction will lead to significant irregular view sampling artifacts. Finally,
because of time constraints for performing near real-time SGCT imaging, the reconstruction algo-
rithm has to be of the filtered-backprojection (FBP) type.

In this paper we propose an FBP reconstruction algorithm that overcomes the above challenges.
Initially, we propose a 2D version of the algorithm, and then extend it to 3D in the FDK-type
fashion. Nevertheless, the 3D nature of the reconstruction problem is reflected in an essential way
since the time each voxel remains visible on the detector determines the illumination patterns of
the voxel. These illumination patterns are then used in the algorithm. The algorithm does not use
view differentiation, so it is of the No View-Differentiation (NVD) type. Note that the proposed
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algorithm applies to a wide range of source trajectories, including, e.g., rectangular (considered in
this paper), circular, elliptical, etc.

2 Description of the algorithm

2.1 Mathematical formulation of the algorithm

We start in the 2D setting. Let f(~x), ~x = (x1, x2), denote the object to be reconstructed, and f̂(~y, θ)
denote its Radon (fan-beam) transform. Here ~y is the source position, and Θ = (cos θ, sin θ) is the
fan angle. Our algorithm is based on the formula (26) in Ref. 2 (which, in turn, is based on the
ideas in Ref. 3). The formula reads:

f(~x) = − 1

4π

∫
S

w(~x, θ)

|~x− ~y(s)|

∫ 2π

0

∂sf̂(~y(s), γ)

sin(γ − θ)
dγ ds, (cos θ, sin θ) =

~x− ~y(s)

|~x− ~y(s)|
. (1)

Here S is the parametric interval that describes the source trajectory ~y(s), and w(~x, θ) is the weight
that controls the utilization of redundant information. The latter can be almost any function that
satisfies the normalization conditionw(~x, θ)+w(~x, θ+π) = 1 for all ~x and θ ∈ [0, 2π). Integrating
by parts in (1) with respect to s similarly to Ref. 4, we remove the view-derivative. The resulting
formula for the cylindrical detector is

f(~x) =
1

2π

∫
S

(
∂

∂s

w(~x, s)

|~x− ~y(s)|

)∫ 2π

0

f̂(~y(s), γ)

sin(γ − θ(~x, s))
dγ ds

+
1

2π

∫
S

w(~x, s)|~y′(s)× (~x− ~y(s))|
|~x− ~y(s)|3

∫ 2π

0

∂γ f̂(~y(s), γ)

sin(γ − θ(~x, s))
dγ ds.

(2)

An analogous formula for a flat detector is as follows:

f(~x) =
1

2π

∫
S

(
w(~x, s)

(
~y′(s) · (~x− ~y(s))

)
|~x− ~y(s)|3

+
w(~x, s)′

|~x− ~y(s)|

)

·
√
R2 + u20(~x, s)

∫ ∞
−∞

f̂(~y(s), γ(u))/
√
R2 + u2

u− u0(~x, s)
du ds

+
1

2π

∫
S

w(~x, s)|~y′(s)× (~x− ~y(s))|
|~x− ~y(s)|3

·
√
R2 + u20(~x, s)

R

∫ ∞
−∞

∂uf̂(~y(s), γ(u))
√
R2 + u2

u− u0(~x, s)
du ds.

(3)

Consider the role of w in more detail. Mathematically, w(~x, θ) is the weight with which the filtered
data at the source ~y(s) contributes to the image at ~x. Here ~y(s) is such that it satisfies the last
equation in (1). Pick any ~x and θ ∈ [0, 2π), and find the pair of sources ~y(s1), ~y(s2) such that ~x is
on the chord [~y(s1), ~y(s2)], and (cos θ, sin θ) = (~y(s2)− ~y(s1))/|~y(s2)− ~y(s1)|. The data at ~y(s1)
and ~y(s2) contribute the same information to the image at ~x (in the context of helical CT, the points
~y(s1) and ~y(s2) are called π-partners, see Ref. 5). Hence, the freedom in the choice of w gives us
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one possible way to accomodate the peculiarities of the scanner and improve image quality. For
example, it may turn out that view sampling in a neighborhood of ~y(s1) is finer than view sampling
in a neighborhood of ~y(s2). Therefore, we can increase w(~x, θ) (the weight of the contribution of
~y(s1)), and decrease w(~x, θ + π) (the weight of the contribution of ~y(s2)). Alternative approaches
to optimize the weight are possible. An example of selecting w for the purpose of eliminating
the backprojection weight is in Ref. 6. Earlier examples of using backprojection weights for cone
beam CT are in Refs. 5, 7.

As is shown in Ref. 8, more sophisticated methods for computing the view derivative (Refs. 8,9)
provide resolution essentially similar to that of the NVD algorithms. However, in the SGCT case,
the reconstruction algorithm is applied to cone beam data, in which neighboring sources collect
views at fairly different locations along the axial (x3) direction. Hence, differentiation between
views may lead to artifacts that would not be present if all the views were along a smooth curve. In
a similar fashion, even though integration by parts leads to a mathematically equivalent expression,
the result may be a numerically non-equivalent formula due to cone beam approximations.

2.2 Illumination pattern and the choice of the weight function

As mentioned earlier, we select w that reduces streaks due to irregular view sampling. To do so,
we compute a visibility map for every image plane. Let p denote the 2D index of an image pixel in
the plane, and j denote the source index. The visibility map ms(p, j) contains binary information
for each pixel-source pair (p, j). The map shows whether the image pixel p is visible (i.e., projects
on the detector) from the source j, i.e. ms(p, j) = 1 if the p-th image pixel is visible from the
j-th source, and ms(p, j) = 0 otherwise. Using the visibility map ms(p, j), a periodic Gaussian
mixture density function in the angular domain ρ(p, θ) is first computed for each image pixel p.
The Gaussian mixture approach uses the visibility map and gives a smooth function on the unit
circle parametrized by θ:

ρ(p, θ) =
∑
j

ms(p, j) exp

−min
(
|θ − θ(p,j)| , 2π − |θ − θ(p,j)|

)
2σ2

s

, (4)

where θ(p,j) = θ(~xp, sj). To make sure w satisfies the normalization condition, we use the formula:

w(p,j) =
ρ(p, θ(p,j))

tw

ρ(p, θ(p,j))tw + ρ(p, θ(p,j) + π)tw
, tw ≥ 0, (5)

where tw adjusts the weight bias between pi-partners. If tw = 0, then w = 1/2 for both pi-partners
in each pair. If tw = ∞, then the partner with the higher density between pi-partners will have
weight w = 1, and the other partner - weight w = 0. Lower σs and higher tw will decrease streak
artifacts, but will also increase the numerical error since w becomes less smooth. Computing w for
each slice x3 = const is time consuming, and saving the pre-computed values takes large amount of
memory. Fortunately, with large enough σs, the Gaussian mixture density for each slice is almost
constant along x3. So we use a single pre-computed w, which is averaged over several slices.
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(a) (b) (c)
Fig 1 Numerical simulation results. (a) conceptual drawing of the SGCT scanner and the phantom objects, (b) recon-
structed image with uniform weighting, (c) reconstructed image with visibility optimized weighting.

3 Numerical Experiments

The SGCT scanner consists of a ring of distributed sources along a rectangle, and a set of sta-
tionary detector modules arranged in a smaller rectangular surface surrounding the imaging region
(see Fig. 1(a)). The detector is slightly offset along x3 relative to the source ring to avoid beam
interference. The sources are simulated to be mono-energetic and fired in a periodic quasi-random
sequence. To test the performance of the proposed algorithm, we compare FDK-type NVD re-
construction with uniform weight w = 0.5 and with visibility optimized weight (5). We simulate
noise-free data for a x3-independent phantom consisting of water cylinders (see Fig. 1(a)). This
experiment is designed to highlight the effects of the weight, which could otherwise be obscured by
cone beam artifacts and noise. Even though the object is x3-independent, the illumination pattern,
visibility maps, and transmission data are all computed using the actual 3D geometry. Additional
reconstructions with 3D phantoms and noisy data will be shown at the conference.

Figs. 1(b) and 1(c) show reconstruction results with uniform and visibility optimized weights,
respectively. The intensity of the sparse-view streaks is significantly reduced by using an opti-
mized weight. The improved image quality is especially important for automated image analysis,
including threat detection.
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