Real-time GPU implementation of a weighted filtered
back-projection algorithm for stationary gantry CT reconstruction
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Abstract. We present details of a real-time implementation of a new algorithm designed to reduce streak artifacts
in switched-source stationary gantry CT reconstruction. The algorithm is of the filtered back-projection type, and
uses a voxel-specific weighting function to account for the non-uniform distribution of illumination angles caused by
such a scanning geometry. The main challenge in developing a real-time implementation is the storage and memory
bandwidth requirements imposed by the weighting function. This has been addressed by storing weights at a low
precision and reduced resolution, and using interpolation to recover weights at the full resolution. Results demonstrate
real-time performance of the algorithm at a realistic problem size, running on a low-cost consumer grade laptop.
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1 Introduction

The Real Time Tomography (RTT) system' is a family of fast cone beam CT scanners developed
by Rapiscan Systems, designed for applications where scanning rate and/or continuous operation
are of critical importance. The system achieves its high speed by employing a stationary gantry,
containing a fixed ring of discrete x-ray sources. By switching the sources in order, the speed
of this design is constrained only by data acquisition bandwidth and available photon flux. The
system uses several fixed rings of detectors, offset from the plane of sources, as shown in Fig. 1.
Sources can be fired in almost any sequence. As explained in Ref. 2, for optimal data acquisi-
tion, the ideal firing order is non-sequential; this presents challenges for reconstruction algorithm
design due to the discontinuous virtual source trajectory. An additional challenge is that the distri-
bution of illumination angles varies considerably over the field of view. The RTT system design has
also been extended to include non-circular system geometries, further increasing this variability.
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Fig 1 Conceptual drawing of the RTT system geometry.



In order to support continuous real-time reconstruction, it is necessary to implement the algo-
rithm as a pipeline, capable of running at data rates of several hundred MB/s. As an example, for
the commercially available single-energy RTT110 scanner, the required reconstruction rate is 480
slices per second, which results in a sustained output data rate of over 400MB/s. For multi-energy
systems, this will be even higher. The analysis in Ref. 2 was based on an iterative reconstruc-
tion algorithm, easily adaptable to any system geometry. However, such algorithms are still not
computationally feasible at the high data rates necessary for real-time use. Therefore, an analyt-
ical algorithm of sufficiently low computational complexity to be capable of being implemented
in real-time, yet still giving good image quality with unusual system geometries, was sought. The
work presented in this paper gives details of the real-time implementation of such an algorithm,
developed by Katsevich et al., presented in Ref. 3.

2 Mathematical formulation of the algorithm

The implemented algorithm is based on the formula (3) in Ref. 3, and is described in detail in that
paper. The algorithm is defined in the 2D sense and extended to 3D using an FDK-type cone beam
weighting. After performing integration by parts with respect to s, in a similar manner to Ref. 4,
the full reconstruction formula, defined in the flat detector geometry, reads:
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Here S is the parametric interval that describes the source trajectory (s), and w(Z, s) is a weight-
ing function, chosen as in Ref. 3 based on the sparsity of the angular illumination pattern.

3 Implementation details
3.1 General approach

The inversion formula of (1) essentially breaks down into the sum of two weighted back-projection
terms, the first term operating on Hilbert transformed data, and the second one on ramp filtered
data. The ramp filter term is implemented as the difference of a ramp filter and Hilbert transform
term in order to avoid a finite difference operation. Fig. 2 shows data flow through the implemented
algorithm pipeline, which forms part of a wider real-time data acquisition and imaging pipeline.
The pipeline runs entirely on the GPU, and is coded in CUDA. Data are copied to and from the
device using asynchronous functions, to allow potential overlap of copying and computation.

The pipeline operates with a granularity of one revolution, defined as the set of all projections
from every source having been fired once. A single revolution of input projection data corresponds
to an integer number of output reconstructed slices; in this way, the reconstruction geometry is
periodic, and the pipeline operations on each revolution are identical.
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Fig 2 Data flow through the implemented algorithm pipeline.

3.2 Back-projection

The back-projection kernel is the most computationally expensive step in the algorithm pipeline.
This is based on a texture memory implementation, where the coordinates on a virtual flat detector
are calculated, and the projection data values read using built-in linear interpolation. Data for each
term of (1) are stored using a CUDA built-in vector type, which allows the values for the two terms
to be loaded using a single texture read. To compensate for the doubled memory bandwidth, the
filtered projection data are stored in the 16 bit half-precision floating-point format, and converted
to standard 32 bit floating-point values in hardware during the texture read. As observed in Ref. 5,
this results in negligible loss of accuracy, but significant increase in performance.

3.3 Weighting functions

Calculation of the weighting function w(Z, s) is computationally expensive, and it is therefore
necessary to pre-compute and store the values for every source-voxel combination. In our imple-
mentation, w(Z, s) is combined with the numerical quadrature weight for integration over s in (1),
to form a single compound weighting function. At the typical problem size for the commercially
available RTT110 scanner, it would take approximately 24GB to store the complete set of weight-
ing values for both terms of (1) in single-precision floating-point format. Although this is feasible
with current generation high-end GPU hardware, it is desirable to reduce this, since loading the
values from GPU memory in the back-projection kernel is a significant performance bottleneck.

In practice, it is not necessary to store the weighting functions at high precision, and using
the 16 bit half-precision floating-point format yields negligible differences, giving a factor of two
reduction. The in-plane weighting functions are generally smooth, but with some discontinuities;
therefore, we compute and store the weighting functions for each source-slice pair at a reduced
resolution, and use GPU hardware texture interpolation to scale back up to the output reconstructed
slice resolution. Empirically, we have found that using a resolution reduction factor of 4 results in
no major image quality degradation, but reduces memory bandwidth and storage requirements by
a factor 16. Fig. 3 shows that differences at the image center are negligible, but increase towards
the edge regions. In practical use, such differences will likely be below the noise level.

4 Performance analysis

The implementation was tested using data from a Rapiscan RTT110 scanner operating at 30 rev-
olutions per second, using a reconstructed slice size of 864 x512 voxels, and 16 slices per recon-
structed volume chunk. The test hardware was an Alienware 17 R4 laptop, with nVidia GTX1080
GPU, containing 2560 CUDA cores and 8GB on-board RAM. Fig. 4 shows a timeline view of
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Fig 3 Results of reconstruction from simulated, noise-free data, with and without interpolation of the weighting
functions; all images using grayscale window of £10% of full scale: (a) — (c) center region, (d) — (f) edge region; (a,
d) no interpolation, (b, €) 4 x interpolation, (c, f) difference.
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Fig 4 Timeline depiction of the reconstruction pipeline, with timings in microseconds.

the complete reconstruction pipeline, demonstrating a total execution time significantly less than
the 33.3ms required for real-time reconstruction. Note that this excludes the time taken for the
host-to-device and device-to-host memory copies, since these are asynchronous.

5 Conclusions

We have presented an efficient implementation of an algorithm designed for optimal image quality
from stationary gantry CT systems with arbitrary geometry. Implementation challenges caused
by the weighting functions and dual back-projection steps were overcome using reduced precision
storage with minimal impact on image quality. Our implementation has been demonstrated to give
real-time performance on low-cost hardware, potentially increasing the reach of RTT technology.
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